
Cloud Controller

CLOUD COMPUTING

UNIT -4

feedback/corrections : vibha@pesu.pes.edu VIBHA MASTI

https://www.sciencedirect.com/topics/
computer-science/cloud-controller

CLOUD CONTROLLER

CONTEXT of CLOUD CONTROLLER- EUCALYPTUS

i started as research project in UC Santa Barbara

• Paid and open-source software for building AWS- compatible
private and hybrid cloud computing environments

• Iaas - hybrid cloud - easy migration of data between public
AWS cloud and oh-premises private Eucalyptus cloud chytrid
cloud deployment)

Terminology

• UFS (User - facing services)
- implements web service interfaces that

handle Aws - compatiple APIs

-

Requests from CLI or GUI

• CLC (Cloud Controller) - high - level resource tracking , management,
resource allocation

,
task scheduling , accounting

-

Only one CLC per Eucalyptus cloud

• CC (Cluster controller) - manages and deploys VM instances
,

manages node controllers and storage controllers

•

NC (Node controller) - runs on the machines that hosts VMs

and manages endpoints
- No limit to number of Ncs
- Interacts with Os and hypervisor to maintain lifecycle of instances

storage services

• SC Cstorage controller) - similar to AWS EBS (elastic block storage
- Provides block- level storage for VM instances

• WS (walrus) - similar to AWS S3 (persistent storage)

R3

CONTEXT of CLOUD CONTROLLER- OpenStack

• Open source platform to manage public and private clouds

• consistent APIs to abstract virtual resources

DISTRIBUTED SYSTEMS

• System with multiple components located on different machines

that communicate in order to appear as a single coherent system

workstation

workstation communication workstation

Network
(100 Mbps

LAN)

workstation workstation

classification of Distributed system models

1. Architectural Models

1.1 system Architecture
- How components of distributed system are placed across

multiple machines
• How responsibilities are distributed
•

Eg : P2P , client-server

1.2 Software Architecture
• Logical organization of software components
•

Eg: 3 Tier Architecture

2. Interaction Models
• Handling of time
• Limits on process execution , message delivery , clock drifts
•

Eg: Synchronous DS
, Asynchronous DS

3. Fault Models
'

Types of faults that can occur and their effects
'

Eg: Omission faults, Arbitrary faults, Timing Faults

System Architecture Models

1 . Peer-to-peer systems

-

Every node acts as both client and server
• Peers autonomous in joining and leaving the network
• Self - organizing
- Peers form a virtual overlay network on top of the physical
network topology

2. client-Server systems

' client asks server for a service

- One server can serve several clients

• One client can request services from several servers

' Master- slave with single point of failure

Building Reliable Distributed systems with Unreliable components

-

Underlying communication network unreliable
, commodity hardware

prone to failure

• Cloud resources need to constantly monitor infrastructure to

ensure reliability
- Individual computer: either fully functional or entirely broken

C.hardware problems , memory corruption etc.) - no in between

Cdeterministic)

- Distributed systems : partial failure possible and common (

nondeterministic)

• Internal networks in datacentres are asynchronous packet
networks Cno guarantee on packet delivery time)

• If you send a request and expect a response things that
could go wrong

• Reliability: probability that system meets performance standards
and yield correct output in a specified time period

summarizing Failures and Faults
• System or component fails when it cannot meet its promises

• Failures due to errors caused by faults

Types of faults

1- Transient Faults:

• Appears once and then disappears

2. Intermittent faults:
• No pattern of occurring , vanishing , reappearing

3. Permanent faults :
i

component needs replacement

Mean Time Between Failures

MTBF = average length of operating time b/w failures

MTBF = total uptime
of failures

Fault Models

Issues that lead to Faults in Distributed systems

1- Timeouts and Unbounded delays
1. 1 Network congestion, and queueing

1. Timeouts and Unbounded Delays

• Ideal system : guarantee on packet delivery time d- every packet is
either delivered within time d or is lost and request handling
time r

- If true
,
2d tr is reasonable timeout

http://gaia.cs.umass.edu/kurose_ross

• Real system : asynchronous networks with unbounded delays

• Experimentally choose either constant timeout or dynamic timeouts

adjusted based on network response times

1. 1 Network congestion and Queueing

•

variability of packet delay in networks is due to queueing
delays

dnodal = dproc + dqueue + d trans + d
prop

congestion
← length ofphysical y

link dqneue = time waiting in buffer Colpdprop = f-
← prop speed

C- 2×108 Ms") link) for trans
, pistons

no . Ofd
trans

= ¥← bits / packet dproc = nodal processing , determine

output link, typically < MST
transmission rate (from header)

• If several nodes (port 1,2, 4) try to send packets to same

destination
, congestion on outgoing link

. If packet lost, TCP retransmits (added delay)

' If destination system 's CPU cores are all occupied , incoming
network request queued by OS

• Virtualized environments : different VMs running on hardware

context switch on cores
, pausing execution ; VMM queues incoming

packets

-

Queueing at sender end CTCP flow control)

- In public clouds / multi - tenant datacenters , all resources are

shared

-

Noisy neighbour can hog resources

- Batch workloads like Map - Reduce can use up links

OMISSION 4 ARBITRARY FAULTS

1. crash - stop faults
• Node suddenly stops responding Cpermanent)
• May or may not be detectable

2. Crash - recovery faults
• Nodes crash and may restart after an unknown period of time
• Assumptions : storage safe but in-memory state lost

3. Byzantine (arbitrary) faults
• Node can do anything unpredictably

Detection of Faults
1. Heartbeats

• Each app periodically sends signal
• If heartbeat not sent for a specified period , failure

2. Probing
• Monitoring service periodically sends probes (lightweight service

requests) to app instance

- Decide based on response

STRATEGIES for DEALING with PARTIAL FAILURES

1- Asynchronous communication across internal microservices

- Eventual consistency
• Event-driven architecture

2. Retries with Exponential Backoff

3. work around network timeouts

• Clients should not block

• Timeouts for responses

4. Use circuit breaker pattern
- client process tracks no . of failed attempts
. If no . of failed attempts > threshold within a period of time ,
' circuit breaker' trips

^ All subsequent requests immediately fail until timeout period
ends

- After timeout
, request sent again

5. Provide fallbacks
. If request fails , client itself performs fallback (return cached/
default data)

6. Limit no . of queued requests
• Limit on outstanding requests that client microservice sends

to particular service

' Polly Bulkhead Isolation Policy

Failover strategy
- Failover : switch to replica upon failure of previously active application

-

strategies
1- Active- Active / Symmetric
2. Active - Passive/ Asymmetric

1- Active - Active

• configuration typically used for load- balancing

• 2 or more nodes run same application / service using same

database server

• All nodes actively processing transactions

. Event of failure
,
other nodes handle load and continue to provide

service

• continuous availability

2. Active - Passive

• Fully redundant instance of each node

• Only brought online if primary fails

SYSTEM AVAILABILITY

• Period for which a service is available and works as required
Cpercentage)

• Terminology

1. Uptime : time for which system is running
- Typically percentage (99.999.1 . or 5 9 's)

2. Downtime : outage duration

- service - level agreement contracts typically include uptime assurance

D: A website was monitored for 24 hours. The monitor was down for

10 minutes . What were the uptime % and downtime % ?

Total time = 24 hours = 24×60 = 1440 mins

Total downtime = to mins

.
: uptime Yo = 1440-10 = 99.3051 .

1440

downtime % =

,L¥
= 0.695%

High Availability

• Design distributed system environment such that

1- All single points of failures removed through redundancy
2. Faults tolerated through automatic failover to backups

• virtually no downtime

FAULT TOLERANCE

• System's ability to continue operating uninterrupted despite failure
of one or more components

• Types of fault tolerance

1. Fail- safe fault tolerance

2. Graceful degradation

considerations for Building Fault Tolerance

Approaches for Building Fault Tolerance

1. Redundancy : avoid single points of failure with hardware and

software redundancies

2. Reliability : dependability ; analyzed based on failure logs, frequency

(a) Mean Time Between Failures

• Average time between repairable failures
•

Higher better

MTBF = total operational time
of failures

(b) Mean Time to Failure

•

Average time between non - repairable failures

MTTF = total uptime of all systems
of systems (that failed)

Q : there are 3 identical systems that start at time t --0 . All 3 of

them eventually fail . Uptimes : 10 hours
,
12 hours

,
14 hours . Find

MTTF
.

MTTF = 10+12-114 = 12 hours

3

3. Repairability : how quickly failing parts can be repaired .

(a) Mean Time to Recovery
- Time taken to repair system

MTTR = total downtime of system
of failures

Q: A system fails 3 times a month and results in 6 hours of

downtime. Find MTTR
.

MTTR = 6- = 2 hours

3

4. Recoverability : ability to overcome momentary failure so no impact
on end-user availabity

Additional Fault Tolerance Techniques

1. Retries

2. Timeouts

3. Circuit breakers

4. Isolate failures

5. Cache

6. Queue

7. Two phase commit

system availability

system availability = MTTF

MTTF -1 MTTR

CONSENSUS

• Distributed database transactions computes must collectively agree
on the transaction output

. Consistent transaction logs

• Goal of consensus algorithm all systems in the same state

. state transition diagram

Replicated State Machine

• Architecture to represent distributed systems

• Deterministic state machine replicated across multiple computers
but functions as a single state machine

• If transaction is valid
, input causes state to transition to next

state according to state transition logic

• systems must reach consensus to transition from one state to

next state

CONSENSUS PROBLEM

• consider a distributed system with N nodes

• An algorithm achieves consensus if it satisfies the following
conditions

1. Agreement : all non- faulty nodes decide on an identical output
value

2. Termination : all non- faulty nodes eventually decide on some

output value

•

Other basic constraints

1. validity
2. Integrity
3. Non- triviality

• Assumption : 3 types of actors in a system
1. Proposers : leaders or coordinators

2. Acceptors : listen to requests from proposers and respond
3 . Learners : other processes in the system that learn final values

• Generally, consensus algorithm defined by 3 steps

- Example

step 1 Step 2

Step 3 Step 4

Step 5

Challenges in Arriving at consensus

1. Reliable multicast

2. Membership failure detection

3. Leader election

4- Mutual election

Importance of consensus Problem

•

Many distributed systems problems are harder than or equivalent to

the consensus problem

• If consensus problem can be solved, other problems can also be

solved

- Problems equivalent or harder

1. Failure detection

2. leader election

CONSENSUS in two SCENARIOS

1. Synchronous Distributed system
^ Can make assumptions about maximum message delivery time

' Bound on local clock drifts
• Consensus possible
• Not practical to assume synchronous

2. Asynchronous Distributed System
• No bound on process execution
• consensus impossible ; there is always a worst- possible scenario

• Probabilistic solutions only
• FLP impossibility

Even a single faulty process makes it impossible to reach
consensus among deterministic asynchronous processes.

Ways to circumvent FLP Impossibility

• FLP impossibility:

• Ways to tackle crash fault Byzantine
tolerant fault-tolerant

i t T T

1. Use synchrony assumptions : Paxos , raft , DLS , PBFT

2. Use non- determinism : Nakamoto

PAXOS ALGORITHM

Phase 1 : Prepare request

• Proposer : chooses new proposal version number n and sends
"

prepare request
"
to acceptors

• Acceptor : if received prepare request (
"

prepare
"

,
n
,
v7 where

n > any other prepare requests previously responded to
,

acceptor sends out ("ack"
,
n
,
n
'

,
v
') where n

' and v' are prev
n and V

• Acceptor : promise not to accept proposals with number L n

' v : value of highest numbered accepted proposal C otherwise :

✓ =
^

,
n =

^)

Phase 2 : Accept Request

• Proposer : receives ack from majority of acceptors > issues

accept request ("accept
"

,
n
,
v)

•

n is same n from prepare request

- v is value of highest - numbered proposal among responses
(✓= maxcsentv, received v's)

-

Acceptor : if receives (
"

accept
"

,
n
, v7 , accepts proposal unless it

has already ached a prepare request with number > n

Phase 3 : Learning Phase

' Acceptor : if accepts a proposal , responds to all learners with

("accept
"
,n,v)

•

Learners : receive ("accept
"

,
n
,
v) from majority of acceptors ,

send ("decide
"

,v) to all other learners

• Learners : receive ("decide
"

,v)

http://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf#page114

Example : Proposers A , B and Acceptors × ,Y,z

①

② No previous proposals accepted

③ Acceptor 2 ignores proposal from A

④ Accept requests sent (accept from A is ignored)

⑤ Send accept to learners

LEADER ELECTION

-

Upon leader failure
,
choose new leader from non- faulty processes

-

Any process can call for an election cat most one election called

per process at any given time)

• Result of election independent of who proposes it

• Liveness condition: every node eventually enters a state in

{elected
,
not - elected}

- Safety condition : only one node can enter elected state and eventually
becomes leader

Formal Election Problem

• One run of election algorithm must guarantee

1. Safety : from all non - faulty processes p , one non- faulty process

q with the best attribute value is elected as leader or election

terminates with NULL

2- Liveness : all non - faulty processes eventually enter a state in

{elected
,
non - elected }

. Attribute values : fastest CPU
,
most disk space , priority , most no .

of files

Ring Election Algorithm

• N processes in a logical ring 5T. every node communicates

only with its neighbours

- All messages sent clockwise

33

4

①÷i:*
"

15

• If a process pi discovers that coordinator has failed
,
initiates

election message with pi 's ID - imitator

• If a process pj receives election message , compares pi of

message with its own ID Pj
- If incoming pi > its own pj , forwards message
- If incoming pic pj and it hasn't yet forwarded an election

message , overwrites incoming attribute with pj and forwards

- If pi ==pj , Pj's attribute must be greatest cone complete
round) and Pj is the new coordinator

. If elected
, Pj sends an

"elected" message to its CW neighbour ,
with its process ID Pj

- If a process pn receives an "elected
"

message from Pj
- sets its variable elected

,

as ID of pj 's message
- forwards message Cunless it is pj itself , to prevent infinite

messages)

Q: Perform ring election if 17 is the initiator

33

,,
←
initiator

① 17

4

Jf:
15

28

② 33

,,
←
initiator

4

't: 24

1

15

28

③ 33

,,
←
initiator

4

it:
15

28
4 24

④ 33

,,
←
initiator

4

:O:
15

28

28

^

:

d
33

⑤ 33 >

,,
←
initiator

4 must do another

round of forwarding
until 33 receives a

't" message with attr =

33

I

must then do
15

another round of
28 forwarding elected

messages

Time complexity

• worst-case : initiator's CCW neighbour has highest attr

- N nodes in ring

^ N -1 messages until highest node receives message
N messages for highest node to receive its own message
N messages to circulate newly elected message

• Total : 3N - I = OCN)

Ring Election with Failures

- If highest node fails
, algorithm never terminates Cno liveness)

. Modified ring election

- Instead of pj replacing pi 's attribute if pj > pi , Pj

appends its attribute to the message Cirrespective of whether

pj > Pi)

- Bypass failed processes

- Once reaches initiator
,
elects process with highest attr

value

- sends
"

coordinator
"

message with ID of newly elected leader

and every process appends its ID to end of message after

locally storing newly elected leader

- Once
"
coordinator

"

message received at initiator
,
election is

terminated if elected ID is on ID list

- If not
, algorithm repeated

Example

i. P2 initiates election

election: 2,3>4,0

> p,

NPO spz <
initiator

election: 2
P5

election: 2,3>4

p3
<

P4 C

election: 213

2 . P2 receives election
,
P4 dies elected

←
election : 2) 3.④0,1

> p,

Po s initiator
n P2 L

P5

P4 Pz
<

3 . P2 selects 4 and announces results

coord 14) : 2,3>0
> p,

Po s initiator
n P2 L

word 14) : 2,3 ps coord(4) '-2

P4 Pz
<

4 . P2 receives word(4) but 4 is not on the list

word(4) '-2,3>0,1
> p,

Po
n

'

pz <
initiator

P5

P4 Pz
<

5- P2 re - initiates election

election : 2,3>0
election : 2,310,1

> p,

Io spz <
initiator

B- election:2

P4 Pz
<

election: 2,3

6. P2 finally elects P3

coordts) : 2,3>0 coord(3) : 2,3>0,1
> p,

Io spz <
initiator

coord 13) : 2,3 ps coord(3)
'

-2

P4 Pz
<

Bully Election Algorithm

•

system where every process can send message to every other

process

• Three types of messages
1. election : sent to announce an election

2. answer : sent in response to election message
3. coordinator : announce identity of new leader

•

When leader fails
,
if a process knows that it has the next -

highest attribute, it elects itself as leader and sends a coordinator

message to all other processes with lower attrs

° If process does not know
,
it initiates election with election message

and sends to processes with higher attrs only

• Then it awaits for answer

- If none received within timeout
,
elects itself as leader and sends

coordinator message

- Else
,
wait for coordinator message

- If no coordinator message received within timeout
,
start a

new election run

• If process receives election message, sends answer message and

begins a new election run (unless it already has done before)

• If process pi receives coordinator message , sets variable elected
;
to

be ID of the coordinator

Timeout Values

• Assume one -way message transmission time is known (T)

• First timeout value (process that initiated election waits for

response) = 2T + (processing time) I 2T

^ Second timeout (process receives election and sends answer/ disagree
message and starts new election) - worst case turnaround time

• Synchronous assumptions
- All messages sent in Trans time larrive)

- Reply dispatched in 1-
process time

after receipt
- No response in 2Twang + 1-

process
→ process assumed to be

faulty

• Other assumptions
- All processes are aware of ID 's of all other processes (their

attributes)

1. We start with 5 processes, which are connected to each other.
Process 5 is the leader, as it has the highest number.

2. Process 5 fails.

3. Process 2 notices that Process 5 does not respond. Then it
starts an election, notifying those processes with ids greater
than 2.

4. Then Process 3 and Process 4 respond, telling Process 2 that
they'll take over from here.

5. Process 3 sends election messages to the Process 4 and
Process 5.

6. Only Process 4 answers to process 3 and takes over the
election.

7. Process 4 sends out only one election message to Process 5.

8. When Process 5 does not respond Process 4, then it declares
itself the winner.

Failures During Election Runs

[

https://www.cs.colostate.edu/~cs551/CourseNotes/Synchronization/
BullyExample.html

Time complexity

. Worst-case : when failure detected by lowest process

• Node sends election to N -1 nodes ; N -1 responses (answer)

- Each of the N - l processes pi sends to N- I - i processes (P1

sends to N-2
,
P2 to N-3

,
. . . , PN- z to 1

, PN- , to 0)
-

Assuming N processes Po to Pn

• OCNZ) complexity

• Turnaround time = 5 message transmissions

TASK SCHEDULING

Task scheduling
algorithms

>
dynamicimmediate '
- takes current VM

- new task scheduled state into account
J

to VM directly static
- no prior info on
global state

batch
"

u
v

- based on

- tasks grouped preemptive non - prior info

before being -tasks can be preemptive about global
state

interrupted - tasks notsent
interrupted

- divides traffic
- mapping among all VMs
events CRR/random)

Levels of Task scheduling

1. Tasks level

• set of tasks/ cloudlets sent by cloud users

- Required for execution

2. Scheduling level

•

Mapping tasks to compute resources

• Makespan : overall completion time for all tasks

3. VM level

• Set of VMS

static Task scheduling algorithms
1- FCFS

2. SJF

3. MAX -MIN

1. First come
,
First serve

• Order based on arrival time

D: Assume 6 VMs with properties as shown (MIPS - million 1ps) and

tasks with following lengths . Apply FCFS
.

• Note : tasks are assigned to VM and must wait for the prev
task to execute

• Dotted - first
,
dashed- second

,
solid- third

2. Shortest Job First

. Sort based on length

• Assume 6 VMs Cline before)

• can lead to starvation

3. Max - Min

• Tasks sorted based on completion time

• long tasks- high priority - VMs with shortest execution time

DISTRIBUTED LOCKING

• Quorum : min no. of votes for acceptance

• Reasons to lock

I. Efficiency
2. Correctness

• Features of distributed locks

1- Mutual exclusion

2. Deadlock - free

3. Consistency

Types of Distributed locks

1. Optimistic

• Do not block potentially dangerous events

i

Hope for the best

uses version

numbers

if version

mismatch
,
fail

2. Pessimistic

• Block access to resource before operating
• Release when done

Implementing Distributed locking

• HBase used to have this problem (due to GC pauses)

Distributed locking with Fencing

• Use fencing tokens with every write request to the storage
service

• Fencing token : no. that increases every time a client acquires a
lock

Distributed lock Manager

- Google chubby
• 2K

- Redis

Zookeeper

- Distributed coordination service

• Features

1. Update node status
2. Managing cluster
3. Naming service
4. Automatic failure recovery

Data Model

• Hierarchical namespace
• 2 nodes : data 4 children
- Tree kept in memory
. Like file system
• small amounts of data - coordination data

,
status info etc

Types of Znodes

i. Persistent
• Need to be deleted explicitly by client
- Permanent Ceven after session terminated)

2- Ephemeral
- Automatically deleted when session that created it ends

- Used to detect termination of client
- can set up watches
• Not allowed to have children

3. Sequence
• Append monotonically increasing counter to end of path
• Both persistent q ephemeral

watches
• Clients get notified when znode modified
• Too many watches

- herd effect

Data Access

• Access Control List for each node

Zookeeper servers
• Leader elected at startup
. Only followers service clients

• All servers : one copy of the data tree [memory)

• Transaction logs : persistent store

• Changes to modes → added to transaction logs

• One server per client until connection breaks / ends

• Zookeeper Atomic Broadcast LZAB) protocol

Reads
- Processed locally at server

writes
° Req forwarded to leader
• Leader gets majority consensus
• Response generated

watches

- Btw client and single server
^ On a znode

2k Operations

Hadoop on Demand

• Slides

Usage of 2K

1. configuration management

• Keep track of nodes in cluster (clients)
- create /members / host - $ {i} as ephemeral nodes
- watch on /members

2. Leader election

- All participants of election process create ephemeral- sequential node

on election path
• /Svc / election- path
• Leader : smallest seq. no

• Followers : listen to node with next lowest seq. no

3. Distributed Exclusive Locks

• Queue of clients waiting for a lock as ephemeral nodes
under /Cluster / - locknode _

- watch on prev host
- Client with least ID holds lock
• Herd effect

