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LLOUD CONTROLLER

— (oNTexT of ClOUD ONTROLLER- EVCALYFTUS
Worked 0c research project W LC Sawto. Barbaro

Poid ond open-toure software for building WS- compodible
privode Ond hybrid cloud computing envirmments

Toat - grid  cowd — easyy wipeotin of dodo between public
AWS clowd ond  en-premices private Ewcalypius tloud Lhyorid
tiowd deployment)

On-premise Eucalyptus laaS

Ea— - >
. ' :

E E Machine Walrus Identity
Cloud Controller  Storage Controller Image (AMI Format) (S3 API) and Access
(EC2 APY) (EBS API) Management (IAM AP1)

On-premise
Virtualization
and Infrastructure



Tecminolopw

UFS (User- facing Services) — implements webo service intrecfaces ok
hondle WS- compatiple  APle

- Regueste from LU or G

© CLC (Clowd  wowtroller) - high-level fesource Arackding, womapement,
resource  O\oakion, ‘oS so\!\u\u\iv\g 1 Mcoumkina
~ Only one CLC per  Cutalyprus  cloud

CC (Uuster Conyoller) - monapes ond  deploys VM intrownces,
MOonages node cowfvollert and s’mage tonkyollere

NC (Node Cowntroller) - cuns on we wathines oy  wosts VMe
ond  monages emdpo‘m\'s

- No lmi+ ‘o nuwber of Nes
~ Tateradts  with 08 and dpervise Yo maintain \iferycle of inttances

/&{:o&aég&uwiwa—

SC Corsrape Controlled) — similar Yo AWS £BS (elashc ‘\dotk Stwvosg)
- Provides \lock-level stovape for VM instances

WL (Walrue) — similar Yo KWL S2 CPer.sis-tew\' shnwbc)

Cloud Cluster Node
components components components
(availability zones)
Cluster controller Node controller I'
(CLC) (CC) I (NC)
U faci
ser-facin
urs) ) LWS) (SC)
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platform

Cloud controller

Cluster 1

Cluster
controller 1

Cluster 2

Cluster
controller 2

FIGURE 6.5

A schematic of key Eucalyptus modules.

(ONTEXT :f CLOUD CONTROLLER— Open Stack

Deploy third party services such as Or use built in tools
CE) (66 (50 o (60
Kubernetes CloudFoundry Terraform OpenStack SDK | | Horizon Web Ul

Bare Metal Virtual Machines Containers
| | |

Shared networking and storage resources

openstack.




Open Source P\u’rf«rm 40 manage public and privote  clowds
© Consistent APTe 4o abehact virtwal vecources

DISTR\BVTED SYSTEMS

© Syttem with multiple components located on  different machines
thot communicate in ovder {o oappear as o single coherent tuctem

Worwstaion

Walkshhn N/ communication Werlstatim
NetworL
(\oo Mbps
LN
Wevichodim wWaerLsiatim

Uascification of Dithributed Cystem Models

L Arontectural Modelc

11 System  Avchivedure
How Ctomponents of distriowred syctem are placed acrocs
Mu\ﬁp\c moachines
How responcibilities are distribouted
© by P2l (lient-server

1L Software ArvtWiedure
Logical ovpanizatim of Software componente
. ea-. 3 Tier Krchitechure



2. InYerackion Models
Havxo\\ir\b of Hme

Limite o procecs exetution, mecsage delivery , cloce Anifs
e Synchronous DS, Aspachronous DS

3. fanlt Model¢

© Types of fault ot can octur and Yweir effects
" € Omicgion foults, Arbitracy fouvs, Timing  Foult

T Ayptum Onchiteckunt Wedely

- Peer-Yo-Ceer S\omms

Cvery node acks as both dient and Server
Peerc  autonomous in Joining and leaving the netweri

Se\f - oypanizi
© feers érm o virtua) overlay netorl on  top of ‘e ?\v\bsic«\
nexw o b?olom

. (lieny-Server SxA:hw

Cliont osus server fox o getvice

One server can  serve several clients

One client can requedt servicer from ceveval tervers
Moster-elave  with singe poink of  failure



Building Reliable Distributed Systems with Unreliable Components

Uv\o\er\\aiv\g wmmunicaion  netwarie  waveliable , commodity wardware
prone tv Failure

Cloud resources weed +o wncrantly  monitor infroghructure
engure ml(a\o‘\\im

© Individual compwtey: either M\'b funthmal o enkicely lorouen
Chardwore problews, mewery Grrupkim er) — Mo in between
tdeterminishe)

Distribwied S\af-\'cmtt potcible ond  tommm  (non -
determinishe)

Tntemal networkc ‘v datacewtyes are
(no auamn\'ee M packet o\e\(vun Xwe)

If you temd & coquest owmd expek o respase — fwinpt  Hawk
WA o wemg

1. Your request may have been lost (perhaps someone unplugged a network cable).

2. Your request may be waiting in a queue and will be delivered later (perhaps the
network or the recipient is overloaded).

3. The remote node may have failed (perhaps it crashed or it was powered down).

4. The remote node may have temporarily stopped responding (perhaps it is expe-
riencing a long garbage collection pause; see “Process Pauses” on page 295), but it
will start responding again later.

5. The remote node may have processed your request, but the response has been
lost on the network (perhaps a network switch has been misconfigured).

6. The remote node may have processed your request, but the response has been
delayed and will be delivered later (perhaps the network or your own machine is
overloaded).



Client %
Network ¢ ----- 5_4 -----------------------------------

Service @ ---------------- { node unresponsive

Figure 8-1. If you send a request and don’t get a response, it’s not possible to distinguish
whether (a) the request was lost, (b) the remote node is down, or (c) the response was
lost.

Pelinbility:  probability) Haok sucrem meeks pecfivmance srandards
and vield coveeck outpur in o Specified ¥ime period

/&\mmm@'ﬂ& Foilurey and Foulls
Suctem or compoment foilk when it cannot meet it promises
Fatlures dwe Yo enie  auced oy fautys

T%\‘aes of Fouits

. Trontient Fawlts:
Appeavs mce and then dicappears

2. Infermittent foulrs:
No pottern of occucring, vanishing, veappearing

3. fermavnent faulks:
Qomponev\\— needs replacement




MTBF

MTBF

n jlures

W

fawlt  Modele

averagy lewgn of operating time bfw fai\uvec

# of foilures

Type of failure

Description

Crash failure

A server halts, but is working correctly until it halts

Omission failure
Receive omission
Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure

A server's response lies outside the specified time
interval

Response failure
Value failure
State transition f.

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary (Byzantine)
failure

A server may produce arbitrary responses at arbitrary
times

Tesuee ¥not Lead 4o fauks ‘w  Distributed Sustews

I- Timeowts and Unbounded delans
LU Network  (onggehiom and queueing

| Timeouts and Unbounded Delaus

Thea\ syctem: guarantee on pocket delivery time d — every packet s
either delivered within +ime d e ik lost — and vequest handling

Yime T

- IF 4rug, 2d4rr 18 (easmable Himeout




Real t\sshm- asynchronous  nedworlis Wit unoounded de\au&s

€><p¢r'\mew\-o\\\3 thoose either congtont Yimeour e dwnamic timeouts
adjusted boaced en network vesponse times

Voriability of pocker dely w networke ¢ due to queuting
o\e\m&s

http://gaia.cs.umass.edu/kurose_ross

«— propagation — ;
.

processing queueing

transmission

g

B LY
e ——

Anoda) = dym ¥ dq,uwc * Aoy A poop

. tongechin
- |ev\b+h of r\\ahml
Apop = 4. hink Aqueue * Hime. waitingy 0 wulfer Cofp
S &— prop Speed link) for tvans, mstoms

C~2xi0b )

dproc > nodal processing, determine
N . Ourput tink, typically < we
frangmicsim vate (From \eoder)

.of
d Arong < _:_Z_F y’,\izg,patu{'

TF teveral nodes Cpork 4,2,4) try Yo send packets 1o same
destinanion, conget—“m on ou*go'ma link

TE pawer logh, TCP velvawswits (added delay



Input links Network switch Output links

S LR RN R e B B o

s 300000 D o

ports 9.0.0.0.0.0.0, BB o
Switch fabric  Output queues

Figure 8-2. If several machines send network traffic to the same destination, its switch
queue can fill up. Here, ports 1, 2, and 4 are all trying to send packets to port 3.

T destination sysrems CPV oree  ore all occupied, incoming
neiworie request queued oy 0S

Virmalized environments: different VMc (unning o wardware
wntext  switdh on  (ores, pawting exetution 5 VMM queues incoming
pachets

Queueh\& of tewder ewd CTLP $low contvol)

Tn  public tlouds | muli-renant dodocewters, o\l vecources ave
shared

= Noisy ﬂei@nbow can \Ao% fesources

= Borch  worklonds \ike Mop-Reduce can use up links



OMI(SION § ARBITRARY €mULTS

. Crash-Sop foulks
Node suddenly stops vespending  (permanent)
May or mag not ‘oe derecrable

2. Cmsh—recowvn faw\rs
Nodes crosh  and Moy vestart ofter an  uawnown ?eriod of Hme
Assumphons: storage safe Wt in-memery stave lost

3. Lyzantine (arvitrary) fault
Node can do am@hw& unpa&iﬁa&m

dez'm%l Fouldhy-

I. HearYbeaks
tach  app perioditally Sends signal
o heartbeat wot sewt fov o speified period, foilure

2. ®cobi
N\on‘r\win& sevvice ?eriodim\\a sends  probes L\(Q)vmdav\-\— sevrvice
regquetyy)  to app instance
Octide ‘ooased m responte

STRMEGIES for DEMLING with PARTIAL FAILURES

- A!\Anohronov\: communicahon QLSS  internal  microservices
evenival wv\siﬂ-enua
© tventr-driven architecture

A Retvies with Exponewtial Badoff



3 Werk Ovound netwerll  timeouts
Uentt  swowld not  Llock
Timeoutc for respans es

b Use cdireuir brealer pottermn
Clien  process 4vacke wo. of failed ottewmphs
If no. of failed oMempts > dareshold  within o period of ime,
‘iceuit  loreakex®  rips
AL subsequent reqmests immediotely foil unfil Hmeout period
ends
AMter Yimeout, cequest tewt oappin

5. Provide fallbatks
¥ vequest fail, Cliont itsef perferme folback  Creturn  cached [
defaunt  dotnd)

6. Limir no.of queued vrequests
Limix m ou+s'rav\dir\a reguests Haatr  client microservice Sewis
‘o parhicular service
Polly Bulthead Ttolakion ?oh’ccﬁ

Foulortr, ,mm%,,

Failover: switch +o replica wpm Hfailure  of previoudy ottive applitatim

s%fw\—%ies
I Ackive- Ackive | Symmedric
2. Rerive - Passive/ Aeymmelvic



- Ackive- kevive

cov\(:i%um‘\'im tupioally wsed 4o load- balancing

L W mme wodes run Some ow\‘\m\im/serv&ce using some
datnbate secver

Al nodes  actively Pprocessing frantactions

{ Disk Subsystem

Active Active Active Active

Normal Operations

tvent of failure, other nodes Wawdle load awd continue Yo provide
service

{ Disk Subsystem

After Failover

Conhinuous o.vui\a\oi\i‘ha

2. Ackive - Pascve

Fully redundant inttance of each node

Only brought  online i primary fai\s



SYSTEM AVAILABIITY

Period foixv whith o tervice @8 available

and  works ot required
Cgercmhq,e)

. Tcrmino\%\a

I UpHime - xime fov  which system & running
- Tupically percentage (24.99%)- w S 9%)

2. Downtime - ou‘mﬁe dwrahom

Service- level agreement cowtrackt fupically include  uphime  assurance

G: A website was wonitored for 26 hours The monity  wot down £
[0 minures. What were the upiime /o and downtime -/ ?

Total +ime = 24 hours = 24 X560 = 440 ming
Total downtime = 10 ming

wphime <A = 1440 -10 . 94.3057.
\Ge¢o

dO\I"\“MC ‘/c > 0 - 0. ‘qs./
440

High hva'\\ab’\li’rg

Decian distributed sustem enviconment twh Yhot
L AN single poinks of foilwres vemoved through reduno\amg
A Fauks tolerafed tavouplh awtomotic failover to backups

. \lir’ma\\b "0 downtime



FAVULT TOLERAN(E

© Systems  ability o towkinue operating uninterrupted despite failure
of one of wmore omponentt

© Types of foult tolerance

- Fail-Safz fault ‘olerance
3 Graceful degradation

consideranons  for  Buwilding Tomlt Tolerance

Some important considerations when creating fault tolerant and high availability systems in

an organizational setting include:

= Downtime — A highly available system has a minimal allowed level of service
interruption. For example, a system with “five nines” availability is down for
approximately 5 minutes per year. A fault-tolerant system is expected to work
continuously with no acceptable service interruption.

= Scope — High availability builds on a shared set of resources that are used jointly to
manage failures and minimize downtime. Fault tolerance relies on power supply
backups, as well as hardware or software that can detect failures and instantly switch to
redundant components.

= Cost - A fault tolerant system can be costly, as it requires the continuous operation and
maintenance of additional, redundant components. High availability typically comes as

part of an overall package through a service provider (e.g., load balancer provider).

Approathes for ?:ui\dina fautt Tolerance

L. Kedum\ancg]: owoid sivxa\e po'm’rs of Coilure with hardwave and
coltware vedundancies

a ke\ia\oi\i%-. depehdo\bi\im', am\g;ud based on fonlure logs, (’mqumcg



(&) Mean Time Between Failureg
hverage fime between cepairavle failures
Higher etter

MTBf = \
# of failures

(k) Mean Time +to Failure
Averoge time between non- repoirable foilureg

MTTF = _total uphiwme of ol ¢
# of systemc CGthat foiled)

8: Mere are 3 denHeal sycrems dhat  start ax time t=o0. Al 2 of
them evertually  fail. Uptimes: 10 hours, 12 wours, W hours. Find

MTTF.

MTTE = 10412+ 14 =12 hours
3

3. Repairability: how quicdy failing portc can be repaired.

) Mean Time +o Retover
- Time tawen o repa'cr s\os\-cm

MTTR = _tota| _downbme of %mm
# of failures

8: A swsrem faale 2 times 0 month and resultt in 6 wours of
downtime. Find MITR.

= & houre

MTTR = 6
%



¢ RecoVembilim-. abiliho Yo overtome momv\i-ara foilure S0 no imyad—
on end-user avod\abi%—s

Addihiona)l Fauwlt Tolevance Tedanmigwnes

L. Redries

2. Timeoutrs

3. C{reuwivr breavevs
k. lsolate failureg
S. Cathe

6. Queue

7. Two Y\\ase wommit

Wa/vwlabuﬁ?:

S\é&h\m owai\a\o‘\\im = MTTF
MTTE + MTTR

CONSENSVS

Dittribwred database ivoniocrions — computec muck  colleckively ogree
on the trantachion output

lonsistent  +trantachim loge
Goal of wntentus olporitm — all syckeme in the same  Sote

Stoke  Avancihon di%mm



Replicated Stoxe Machine

* hvtwitedure Yo represeny distvilonted sycems

Determiniciic  State mochine replicated  acvoss  mwiriple  Computers
bur  funthimg ot o sinye  State  wachine

wer |2 2]E0E]

v |EEETE|

607 ayels paresijday

ol 1|

6 tromsacttion s valid, inpwt causes  state to  trantition +o  next
stofe aaoro\(:\o\\ to trate 4vamsition Logyic

Transaction Transaction

~ state 1 ~| state 2 state n

State State
transition

Initial
State

transition

S——p— =

State transition logic State transition logic

Systems mutt reath  ontensut 4o dransihom from one  State Yo
next+  state

{E [e]2] [e]2]e] [e]=2]e]2]
) f(x) f)
Y

Consensus
Algorithm




CONSENSVUS  PROBLEM

© (owngider o distribured system  with N nodes

An o\\qsoﬂ-‘:hm oachieves (ongensut  if it tatishec the (’ollow'ma

onditigng
1. Agreement: all non—-(‘au\-ra vodes decide on an identical output

va\ue
2. Terminahion: ol nown- Fo.u\hﬁ nodes wm’«\m\\b decide on some
ow\'?\k\' volue

O¥her batic constraints
v \Ja\'\d‘\*\\a

2. Iw\'eﬁﬂ

3. Non—hivia\'\hd

© Assumption: 3 tupes of actovs in o System
| Propoters: leaders e coovdinatere
& Reephure: listen o requeste from  propocere and vetpamd
3. Learners: otmer processes o 4he  system et leamn  final  valwes

© benerolly, concensus  alaovithm  defined by 3 steps
Step 1: Elect

e Processes elect a single process (i.e., a leader) to make decisions.

e The leader proposes the next valid output value.

Step 2: Vole
e The non-faulty processes listen to the value being proposed by the leader, validate it, and

propose it as the next valid value.

Step 3: Decide
e The non-faulty processes must come Lo a consensus on a single correct output value. If it
receives a threshold number of identical votes which satisfy some criteria, then the
processes will decide on that value.

e Otherwise, the steps start over.



" example

I'm the leader!

Step |

Node 2

Node 1

[°]

Node 1

Node 4

Step 2

Okay got it!
Ivote2

Node 2

Node 3

[):z!

Okay got itt
Ivote 2

Node 3

Okay got it!
Ivote 2

Node 4

[z

Node 1

[1iz

S+ep S

Here's the next value!
Set"2" )
g1
i 2

Node 2

[o1=]

It's official.
Mark 2" on the books

Node 2 IZI

Node 1 L-f'z"' Node 3 El

B
12 Node4 |[0]

Srep Y
Node 2 E'z

Node 1 Node 3

Node 3

Node 4

[IEz]

[]
[

Node 4 Ez

[z



Challenaes n Pﬂ‘rivil\r{\‘ ot (ongengug

\. Rellable mulhcach

2. Memverghip failure  derection
3. Lender elethon

b Muwhaal  electimn

Importance of Concensue  Problem

Many distributed suctowt problews are harder than 6 equivalent o
the (onsencus  problem

If wnsensus problem tan be Solved, other problems can oko e
solved

Problems equivalent sv harder

CONSENSUSL wn TWO SCENARIDS

L S\y\dnronous Distributed Sustem
(an wmate assumphiont about wmoaximum messoge delivery tme
Bound on local dlock drifes
loncentus  possible
Not practical +o assume tyndavonous

2. Asynonconous  Oistriloured Sustewn
No bound en procecs execution
Congemsut  impottible, *here i always O wWextr-possible scenario
Provobilishic  solwhions enly
FLP impossilility



Woawe +o  Circamvent  FLP Tmpossibility

FLP  impostibility:

Even a single faulty process makes it impossible to reach
consensus among deterministic asynchronous processes.

twzantine
\A‘)mos Yo tocule "m_:\o\:::nl: pau\\' ~Yolerant
T 2 A

b Use syathrony astumptime: Posos, roft | OLS, PBET

2. Vse  non-determinism: Navwamoyo

PAXOS  ALGLORITHM

Phose 4: Prepare reguest

Proposer: cnopces new  proposal vertion number N and  gend¢
P : prop
“prepare veguest” 4o acceptors

Acceptoy - iF recelved prepare vequest C(Vprepore”, n,v) wheve
N> any other prepare vequests previouslyy vesponded o,
occeptoy sewde out (“ack”, n, n’,v') where ' and v’ are prev
woand v

Accepher: Promise not 4o actept proposals with number £ n

V. valwe of highest nuwbered  accepted proposal Cotherwise:

N I\, n= "



Phase 2 : Accept Request

Proposer: creceiveS ack from ma\'\rriha of acceptoys —> issues
accept request (“occept”, n,v)

nic same 0 from  prepare veguest

V it volue ok highest- aumbered proposol among vesponges
( V= max (sent v, received v's)

Acceptor: f veceives (‘accept”, 0,v), occepts proposal wnless i
has oalveady ocied & prepare reguest  with  number > n

Phage 3: Learning Phase

Aceepter: if occepts o propotal, respmds o all learners With
“a tcept ‘1\ W)

" Learnere: veceive (‘accept™ n,v) from Ma6¥ iy of accepreve,
send (“decide”,v) to all other learnerg

vearnere . receive (“decide” V)

—— I"‘ .l\‘

\ __w| Acceptors |
\ =l /
] y \ » i . /
“‘ Proposer }.ki ¥

A | Acceptors ——————»{ Learner
r \ J / I| l’

— v »___7’4“'.‘ "": \ /
[ \ — ‘ ~—
| Proposer }f -
N Yy, Y -

S b T ¥
Al Acceptors [



(=B BV

@

10
11

12
13

14
15

16
17

18
19

20

procedure Propose(n, v)

// Issue proposal number n with value v
// Assumes n is unique

send prepare(n,v) to all accepters

if some v' is not L then
L v < o' with maximum n,,

| send accept(n,v) to all accepters

procedure accepter()
initially do

Ng < —0O0
v L
Ty ¢ —00

upon receiving prepare(n) from p do
if n > max(nq,n,) then
// Respond to proposal
send ack(n,v,n,) to p
Ng < N

upon receiving accept(n,v’) do
if n > max(nq,n,) then
// Accept proposal
send accepted(n,v’) to all learners
if n > n, then
// Update highest accepted proposal
L (v,ny) + (V' n)

wait to receive ack(n,v’,n,) from a majority of accepters

Algorithm 12.1: Paxos

Example: Proposers A,8 oawd Acceptrs Xx)y.2

0)

prepare I'(’(,!HL'S[

Proposer A

Proposer B

Acceptor X

Acceptor Y

[n=2, v=8]
>
prepare request
>
»
L
»
4 4 >
L

Acceptor Z



(® No previows  proposals  occepred

prepare response  prepare response
[no previous) [0 previous])
Proposer A - = ~
g prepare response
[no previous]
Proposer B — — —— —— ot 7 o >
Acceptor X [n=é, >=8] 3 >
Acceptor Y >
P [n=2, v=8]
Acceptor Z = >
[n=4, v=5]
® Acceptor 2 inores  proposal from A
Proposer A >
prepare response
[n=2, v=8]
ProposerB - — — ——— — > 4 >
___________ <" prepare response
e oo n=2, v=8
Acceptor X e I > |
[n=4, v=5] i

Acceptor Y {TI;T,U=5} >
Acceptor Z »

In=4, v=5]

® Acepr vequecks sent Caccept fom R i ignored)

Proposer A »

accept request
[n=4, v=8]

Proposer B 2

Acceptor X >
~re - A =

Acceptor Y [n=4,v<8] =
- . Ny s

Acceptor Z [n=4,v=8] =
Learner "



(D Send accept 4o learners

Proposer A
I

v

Proposer B —

\ 4

Acceptor X

\ 4

[n=4, v=8]

Acceptor Y

\ 4

Acceptor Z

\ 4

Learner .| E | A

v

LEADER ELECTION

Upon leader failure, thoose new leoder from V\on—hu\\-& procesees

gy process can ceall for an eleciom (or wost one elechon called
per process ot owy given Hme)

Resutt of elecHmn indepewdent of who proposec it

Liveness  owdihon: every node evev\hm\la entere o stake n
{elected , not-elecred}

Sofety ondifim: only one wode can ewter elecked state and eventually
become( leader



formal €leckion  Ycoblew

One un of eleckim  alporithm mucy Suawv\’cw

I Sofery: from all non-faulty processes p, one non-Faulty process
9 with the best ottvibwte value ‘i elected os leader or election
rerminodes wita  NUOLL

Q- Livenesc: a\ non—@au\\-a Processes evenma\lta enirey & stove
{elected, non-elected

Miribwre Values: foctesr PV, most disk space, prisvity, most no.
of files

Ring €lection Alasrivhm

N processes i o logical ring ST every node OMmunicatet
only with it  neighbous

Al Messanes - sent dogwise




% a procece p; discovers fhat coovdinater has foiled, initiotes
eleion  mescape With gi't D — initotey

¥ o process p; receives election metsage , compares p; of

mectane with  its own D P

- W ncoming p; > i own g5, fevwards messae

- If incoming ;< Py and it hase't wet Ffevwarded an electim
Mesage , verwrites inwing Ontvibwre with py and  ferwards

- TE pi==p, fe otiviewre must be  greatest  tone complete
vound) and Py i the new coordinater

I elected, p Sends an “elecred” mestage Yo ity W ne'\&\\awr,
Witk Ws process (D p;

% o process p, veceives an ‘“elected” wessage foom Py

- stis e varioble elecked as 10 of pik mecsone

- forwamkt meteage Cunlest it is p; iself, to peevent infinite
messages)

6. Pecform ring, deciy i 17 & e initiader

initiatey







s initiotey

wmwet do ownother
round of fecwardl
unil 32 received &

MESSIR e With oty =
33

Wt  ihen do
onotner vound of
dorwording elected
M%waeg



Time (.omp\ex't-he

o Wortk-case :  initiator's etW neiawoour hag h'\a\nes\— oty

N nodes in  ring

N-l mecsanes unh]  wiohest wode vecelves  messone

N mesopes €5y Wighes node o veceive itc own  messagy
N metloges to Circulafe  newly elected messone

Total: 3N-1 = OWN)

Rinp Elecion  with Failures

T6 highest  aode faile, algevithm never ferminafes (no \iveness)

Modikied ring electiom

\

Tnstead of 5 replacing pié adtribure it g Y P, P
o.ﬂnwls e atiribute 40 ¥he mestane (irvecpective  of  whether
TRAD

Bupocs failed processes

Once readnes inivintor, eledt procecs with  wighet oty
Volue

- Somdg Ccoovdingtor T wetsage with 1D of newly elected leader
and  wvery process apptwdc e 10 to end of mescage after
locally stoving v\cw\n elecked \eadev

- Onte “coordinokor” wmecsane veceived at initater, elecdon ic
terminated W elected (D 18 on D ligk



- U not, algoithm rzpm:\’u\

Examgle
. P2 inihoted elecign

eleckhiom: 2,3,4,0

0
(b0) © @ — iitintoy

@ elecion- 2
electim: 2,34 Q
. electim: 2,3
2. P2 veceives eleckion , P4 dies elected

leckion: 243,80,
/_) eleckom: 2,3,40
(bo) ‘/im'+io\+ov

)
® ®

3. P2 seleckt & ond announces  vesulrs
toord (): 2,3,0

coord (1):2,3




. P2 veceives coovd(®) bwt & ic not on twe \isr

@
@ ' @ — initiodoy

®

S. P2 re-initaYes eleckion

CDOTAUO ‘.7.-.3,0,\

eleciim: 2,3,0

elechim : 2,3,0,)
W

e\emm‘a Z]S
¢. P2 Fn\aug) eleks f3

toord (3):2,%,0 LOO!‘&(})? 1‘\5’07|

coord (3):1,3




Bully Election Wagrithm

Sysrem Wheve every process can send messogqe to  every other
pfO(.KS

Three types of messanes
sent Yo awnounce an electiom
tent in vesponte o election  mesSape

ownounte identity of new \eader

When leader fails, i o process knows Yaak it hat the next-
higheet ottvibure, it elede ikted os leader awd swnds o ordinater
message to A\l other procatses with lower otive

U process doec not know, i initiates elecHm with eletim mestagp
ond  Semds Yo processec with Wigher ative  only

Taen  awats foy oncwer

= TF none recelved within timeout, ¢lecs irtelt as  leader amd sewds
ordinafer message

- €lse, woit fov  wordinater megtope

- If 00 wordinaker messape veceived within  Yimeout, ttart a
new election cun

* TE process receivee election mestage, sende oniwer messape and
beging & new elecim rtun Cunless it already hag done bekrred

* 3F process receives toordinaker wessage, sets varioble to
be D of the Coordinatey



Timeoutr Values

ASsume one-ma me&taac ongmission Hime © wnown (T)

Firek Himeout vowe Cprocess that initiated election waite fov
re:?ome) © 9T + (proces:ina time) % aT

Setond Yimeout Cprocess receives elecim and sends  onswer/ ditagyree
mescage and starks new eleckion) — worst case turnaround time

Synchronous  assumprions

- MU mestopee sear n Tl time  larrived

- R""ﬂ o\\t?a‘\'chcd n Tpmcm time  offer receipt

- No response in AT, 4 Toroces — prOCESS astumed 4o be

(’auﬂ-g

Other Otsumpiions
- AW procestee are aware of 1Dz of all other procestes (+heic
attributes)

@ Election ~
: =
Elecfion

answer = ok
v Ele‘iftio

g { 4 Election
[ X
@ J P3 @\ Elecnon
e @ Ele fion

[ 1.P2initiates election | | 2. P2 receive s answers [ 3.P3 & P4 initiate election |

eoe| [y BT
®=0| (B9 By

~{Pa
“{4.P3receives reply [ — mﬁctws‘mﬂt ~ 6.P4announcesitself |~




1. We start with 5 processes, which are connected to each other.
Process 5 is the leader, as it has the highest number.

2. Process 5 fails.

3. Process 2 notices that Process 5 does not respond. Then it
starts an election, notifying those processes with ids greater
than 2.

4. Then Process 3 and Process 4 respond, telling Process 2 that
they'll take over from here.

5. Process 3 sends election messages to the Process 4 and
Process 5.

6. Only Process 4 answers to process 3 and takes over the
election.

7. Process 4 sends out only one election message to Process 5.

8. When Process 5 does not respond Process 4, then it declares
itself the winner.

election

election

/‘-;—\. c

election

Stage 1 ><
1 2 3 4

answer
election

election - election®> C
Stage 2 ><
answer
P1 PR Ap P
2 3 4
timeout
Stage 3 >< ><
. P P P P
1 2 3 4
Eventually..... .
coordinator
/——\ C
Stage 4 >< ><
P P P
1 2 3 p4



Time C.OW\PIexH'g

Wovrst -cage: when failure  detected by lowett process
Node cends clection fo N-1 node¢ ; N-| recpamses (ancwer)
tadh of the N-| processes p; sewds to N-I-i processes (P4

sende o N-2, PL 4o N-3,...y Py, 4o | | O 40 D)
- Msum‘mﬁ N procesces P, +o

OLN™) complexity

© Turnovround time = S mecsage tranimicsions

TASK_SCHEDULING

Togk Stheduli f\a

a\ﬁm’r\nm
dywnamic
mmediate {d)
-to\el curvent Vv
- new Yagu schedued troke ir&o :‘cwum'
bov i . -no priovy info on
M directly i -g:::»: o a\ob‘;\ ctate
o
-tacke grouped preemprive  NOn- ":"_'\_ ";t': \
before being  —kasks can be preemptive m,; Ji0ba
sent kerrupted ’;\‘é‘::“m‘\ - divides troffic
- MappING among, all VM¢

evenys (RR [rxndom)



Lvele of Totk Scheduling

G G Guae) G (i) mashoteve

ll Scheduling Algorithms Scheduling Level

I

VM1 VM2 VM3 VMs Level

I- Tacks (evel
sef of +taskc/ cloudlets snt by cloud usere
Required for execution

2. Sd/\edu\ina level
Mappirg Tofw Yo compute Yetources
Makespan: overall completim +ime for all togks

3. VM \evel
- Set of VN

thobic Joke_goheduling. alywithmmy
- HFS

2. SJF
. MAX-MIN

—

(%4

A. Ficst (ome, Ficst Serve

Order bated o Q&rrival 4ime



:ASSume 6 VM with properties o shown (MIPS - million 1PS) awd
tocis with Fo\low‘m% lw&\m. P‘?\’\‘Q FCFS.

Task Length
t1 100000
t2 70000
t3 5000
t4 1000
t5 3000
t6 10000
t7 90000
t8 100000
t9 15000

t10 1000
t11 2000
t12 4000
t13 20000
ti14 25000
t15 80000

Assume we have six VMs with different properties based on tasks size:

VM list = {VM1,VM2,VM3,VM4,VM5,VM6}.

MIPS of VM list = {500,500, 1500,1500,2500,2500}.

Note: todks ore aisigned Yo VM and  musky wait for  Hae peev
tatk +p execute

Dotted — ficet, dached- setond, solid-+aird




Waiting time

200

VM1

140

VM2

333

VM3

0.66

VM4

12

VM5

VM6

180

200

10

t10

0.66

t11

0.8

t12

16

t13

t14

50

t15

53.33

2. Shertest Job Ficst

Sovt based lengith

© ARsswwme 6 VMt

tike \efsre)

tan \ead *v starvation

Tasks
lengths




Task ET Waiting time
t4 2 VM1
t10 2 VM2
t11 1.33 VM3
t5 2 VM4
t12 1.6 VM5
t3 2 VM6
t6 20
t9 30
t13 13.33
t14 16.66
t2 28
t15 32
t7 180
t1 200
t8 66.66
3. Max-Min

© Tosks sevied based on completion time

Longy Yocks- hia\n priority— UMc  with  shortest execuhion  +ime

Tasks
lengths




Task ET Waiting time
t1 40
t8 40
t7 60

tis 53.33
t2 140
tiq 50
t13 8
t9 6
t6 6.66
t3 3.33
t12 8
t5 6
t11 0.8
t4 0.4
t10 0.67

DSTRIBUTED LOCKING

© Quotum: min no.

of vokres for acceptance

Reasone Yo loke

I e titney
5. lorrecmess

features of distribured locks
1. Muhual exclution

a. Deadlock - free
3. Comisﬂma



Types of Distribwred Locks

|- Ophimithe

Do not block po+¢n1\‘o\l\5 o\awserou: vewts
* Hope for the loesy

uservice 1 Hservice 2
Database
B : —
Asks for record—; ”
¢ Returns record with version 1—
— ey

Asks for record——>

—Returns record with version 1—

Updates record with v.1 to v.2—»
P Update success

- Updates record with v.1 to v.2—»
: <«———Update fail

2. Peskimithic

© blotk access to resource  befove operating
* Releate when done

pservice 1 pservice 2 Lock
Manager

Acquires lock—
H
Return lock-

Acquires lock —
g —Lock fails

Updates record R —
< Update succes: :

L
: T
, !
: !
, !
. !

A

Database

'
'
'
i
i
i
i

vges  version
numboere

& vertim
miswmoadch, fail



Implementing Distributed Llodding

For example, say you have an application in which a client needs to update a
file in shared storage (e.g. HDFS or S3). A client first acquires the lock, then
reads the file, makes some changes, writes the modified file back, and finally
releases the lock. The lock prevents two clients from performing this read-
modify-write cycle concurrently, which would result in lost updates. The code
might look something like this:

// THIS CODE IS BROKEN
function writeData(filename, data) {
var lock = lockService.acquireLock(filename);
if (!lock) {
throw 'Failed to acquire lock';

try {
var file = storage.readFile(filename);
var updated = updateContents(file, data);
storage.writeFile(filename, updated);

} finally {
lock.release();

Lock lock held by client 1 lock held by client 2 time
B e e - - - - >
service @
get ok lease ok
lease expired
Client 1 % = stop-the-world GC pause I \

get
lease

Client 2 % ffffffffffffffffffffffffff
Storage @ fffffffffffffffffffffffffffffffffffff

Figure 8-4. Incorrect implementation of a distributed lock: client 1 believes that it still
has a valid lease, even though it has expired, and thus corrupts a file in storage.

- Heate wted 4p wave Hhig froblem Cdue ‘o GC pauses)



Distribu¥ed Locking with Fewncing

© Use &‘mcina folene  with vty write requet to the  ctevage

.

service

-+ fenting ‘Yoken: no. twoat  increages every time o client ocquives &

locle

lock held by client 2

Lock lock held by client 1
service a ______ Y
get ok, lease ok,
lease token: 33 expired token: 34

stop-the-world GC pause I

\

Client 1 % -

get
lease

Client 2 %
Storage E

token: 34

write
ok

rejected:
old token

Figure 8-5. Making access to storage safe by allowing writes only in the order of increas-

ing fencing tokens.

client 1's session is closed . s dp
l time
client 1 acquires the lock client 2 acquires the lock
—— — BT Y e e e . L o o == SEEEES
lock fence=1 fence=2
lock() . ] )
client 1 hits a GC|pduse client 1 wakes up
- — — = e >
client 1 set_fence(1) write() write()
lock()
>
client 2 set_fence(2) write()
< | . S | A A U SO
i service belongs to client 1 service beldngs to client 2
external service 1
D TR I T

& service belongs to client 1
external service 2

service belongs to client 2



Vishribured Lotk Mannner

(aoo&\e cmbbs
A S
- Redis

Zoo\uzge.r

- Dittributed oordination service

Features

| Update node $totue

a. Mav\a@ir\g cluster

3. Naming tervice

. Awtomatic failure cecovery

Data. Model

" Wieravdateal nomespace

* 2nodes : data § daildren

- Tree wept In mem

+ Like file system

© Small omountt of data — coordinakim data , dotus ido e

/z00/duck /zoo/goat /zo00/cow




Tipes of Znodes

. Persistent

Need +o be deleted explieitly by client
Permanent Ceven after gession terminoated)

2. E\W\emem\
. ku&omod'\‘cm\\“ oelered when setion Yaotd creared & ends

Uted 4o detect rerminakion of clieny

© Can  Sebr up wotches
Not allowed Yo wave daildven

3. Sequence
kwmd monotonically il\u'o.nsu’(\a wunter ‘o end of potia

Roth pertittent ¢ ephemeral

Waotdnes
© tlewts get notified when 2znode wmodified

* Too many watthes = herd effect

Oatra. Accecs
Accecc Contyo) Lisx fni each node

woue?er Servers
© Leader clected ot startup
© Only followerr setwice Clientg

Server Server erver Server Server

‘ Client ‘ ‘ Client ‘ ‘ Client ‘ ‘ Client ‘ | Client ‘ ‘ Client | | Client ‘ ‘ Client |




AL servers: one opy of he data tree (memery)
" Teantachiim logs: persistent stove
* Unawnges to 2nodes — added 4o trancadkion logs
One terver per cliont until connecim  breaks Jends
Zooleeper Momic Broadcast (2ABD  protocol

Reads
- Processed loca\\a ok server

Weites
Rey, ferwarded +o leader
Lender gett majevity onsemsug
Response geveroted

Watdnes
Bjw client and sinple gerver

on & znode

2K oPemh'ms

create Write
delete Write
exists Read
getChildren Read
getData Read
setData Write
getACL Read
setACL Write

sync Read



setData /config, setData /conflg,
x if z if

. version is 1 version is 2 Failed!
(lientc, =

L
/config /config Incorrect
version=1 version=2 /config version
version=3
ZooKeeper /\ /\
(lientc, >

getData /config X, version 2 setData /config, /config .
y if version=3 Time
version is 2

v

@ Client ¢, writes the first version of /config.
@ (lient ¢, reads /config and writes the second version.
@ Client c, tries to write a change to /config, but the request fails because the version does not match.

Hadoop on Oemand

© Qlideg

VSope of 2¥

Conﬁaumﬁm Mavopement

© Veep frack of nodet in cducter Celients)
* treote /members [ host - 441X as epnemernl nodeg
* Watth on /members

Cluster

/members

host-1
host-2

host-N



9. lLender elettion

A\ participants of eleckin process ereate ephemerai-Sequential node
on eleckim path

[eve | tlectin-padn

Leader: smaollest seq, no

Followere: listen 4o node with next lowest seq,. no

Zookeeper Ensemble

/svc/election-path

2node
' 0000000001

3. Distribured Exdusive \ocks

Gueue of clientt waiking for o lode ac  ephemera) wodes
under /cluster |- locknode —
Wakth on prev host
Clieny wivh least D wolde \oe
Hevd effect
ZK
| ---Cluster
+---config
+---memberships
+---_locknode_
+---host1-3278451
+---host2-3278452
+---host3-3278453
+omm
\---hostN-3278XXX



